Analysis of an Il’in Scheme for a System of Singularly Perturbed Convection-Diffusion Equations

نویسندگان

  • Mohammad Ghorbanzadeh
  • Asghar Kerayechian
چکیده

In this paper, a numerical solution for a system of singularly perturbed convection-diffusion equations is studied. The system is discretized by the Il’in scheme on a uniform mesh. It is proved that the numerical scheme has first order accuracy, which is uniform with respect to the perturbation parameters. We show that the condition number of the discrete linear system obtained from applying the Il’in scheme for a system of singularly perturbed convection-diffusion equations is O(N) and the relevant coefficient matrix is well conditioned in comparison with the matrices obtained from applying upwind finite difference schemes on this problem. Numerical results confirm the theory of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A robust finite difference scheme for strongly coupled systems of singularly perturbed convection-diffusion equations

This paper is devoted to developing the Il’in-Allen-Southwell (IAS) parameter-uniform difference scheme on uniform meshes for solving strongly coupled systems of singularly perturbed convection-diffusion equations whose solutions may display boundary and/or interior layers, where strong coupling means that the solution components in the system are coupled together mainly through their first der...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

Construction of Boundary Layer Elements for Singularly Perturbed Convection-diffusion Equations and L- Stability Analysis

It has been demonstrated that the ordinary boundary layer elements play an essential role in the finite element approximations for singularly perturbed problems producing ordinary boundary layers. Here we revise the element so that it has a small compact support and hence the resulting linear system becomes sparse, more precisely, block tridiagonal. We prove the validity of the revised element ...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011